33 research outputs found

    Assessment of joystick and wrist control in hand-held articulated laparoscopic prototypes

    Get PDF
    Various steerable instruments with flexible distal tip have been developed for laparoscopic surgery. The problem of steering such instruments, however, remains a challenge, because no study investigated which control method is the most suitable. This study was designed to examine whether thumb (joystick) or wrist control method is designated for prototypes of steerable instruments by means of motion analysis. Methods: Five experts and 12 novices participated. Each participant performed a needle-driving task in three directions with two prototypes (wrist and thumb) and a conventional instrument. Novices performed the tasks in three sessions, whereas experts performed one session only. The order of performing the tasks was determined by Latin squares design. Assessment of performance was done by means of five motion analysis parameters, a newly developed matrix for assigning penalty points, and a questionnaire. Results: The thumb-controlled prototype outperformed the wrist-controlled prototype. Comparison of the results obtained in each task showed that regarding penalty points, the up ? down task was the most difficult to perform. Conclusions: The thumb control is more suitable for steerable instruments than the wrist control. To avoid uncontrolled movements and difficulties with applying forces to the tissue while keeping the tip of the instrument at the constant angle, adding a ‘‘locking’’ feature is necessary. It is advisable not to perform the needle driving task in the up down directionBiomechanical EngineeringMechanical, Maritime and Materials Engineerin

    EVA: Laparoscopic instrument tracking based on endoscopic video analysis for psychomotor skills assessment

    Get PDF
    INTRODUCTION: The EVA (Endoscopic Video Analysis) tracking system a new tracking system for extracting motions of laparoscopic instruments based on non-obtrusive video tracking was developed. The feasibility of using EVA in laparoscopic settings has been tested in a box trainer setup. METHODS: EVA makes use of an algorithm that employs information of the laparoscopic instrument's shaft edges in the image, the instrument's insertion point, and the camera's optical centre to track the 3D position of the instrument tip. A validation study of EVA comprised a comparison of the measurements achieved with EVA and the TrEndo tracking system. To this end, 42 participants (16 novices, 22 residents, and 4 experts) were asked to perform a peg transfer task in a box trainer. Ten motion-based metrics were used to assess their performance. RESULTS: Construct validation of the EVA has been obtained for seven motion-based metrics. Concurrent validation revealed that there is a strong correlation between the results obtained by EVA and the TrEndo for metrics such as path length (p=0,97), average speed (p=0,94) or economy of volume (p=0,85), proving the viability of EVA. CONCLUSIONS: EVA has been successfully used in the training setup showing potential of endoscopic video analysis to assess laparoscopic psychomotor skills. The results encourage further implementation of video tracking in training setups and in image guided surgery

    Retracting and seeking movements during laparoscopic goal-oriented movements. Is the shortest path length optimal?

    Get PDF
    Aims- Minimally invasive surgery (MIS) requires a high degree of eye–hand coordination from the surgeon. To facilitate the learning process, objective assessment systems based on analysis of the instruments’ motion are being developed. To investigate the influence of performance on motion characteristics, we examined goaloriented movements in a box trainer. In general, goal-oriented movements consist of a retracting and a seeking phase, and are, however, not performed via the shortest path length. Therefore, we hypothesized that the shortest path is not an optimal concept in MIS. Methods-Participants were divided into three groups (experts, residents, and novices). Each participant performed a number of one-hand positioning tasks in a box trainer. Movements of the instrument were recorded with the TrEndo tracking system. The movement from point A to B was divided into two phases: A-M (retracting) and M-B (seeking). Normalized path lengths (given in %) of the two phases were compared. Results- Thirty eight participants contributed. For the retracting phase, we found no significant difference between experts [median (range) %: 152 (129–178)], residents [164 (126–250)], and novices [168 (136–268)]. In the seeking phase, we find a significant difference (<0.001) between experts [180 (172–247)], residents [201 (163–287)], and novices [290 (244–469)]. Moreover, within each group, a significant difference between retracting and seeking phases was observed. Conclusions- Goal-oriented movements in MIS can be split into two phases: retracting and seeking. Novices are less effective than experts and residents in the seeking phase. Therefore, the seeking phase is characteristic of performance differences. Furthermore, the retracting phase is essential, because it improves safety by avoiding intermediate tissue contact. Therefore, the shortest path length, as presently used during the assessment of basic MIS skills, may be not a proper concept for analyzing optimal movements and, therefore, needs to be revised.Biomechanical EngineeringMechanical, Maritime and Materials Engineerin

    Force measurement platform for training and assessment of laparoscopic skills

    Get PDF
    Background - To improve endoscopic surgical skills, an increasing number of surgical residents practice on box or virtual-reality (VR) trainers. Current training is mainly focused on hand–eye coordination. Training methods that focus on applying the right amount of force are not yet available. Methods - The aim of this project is to develop a system to measure forces and torques during laparoscopic training tasks as well as the development of force parameters that assess tissue manipulation tasks. The force and torque measurement range of the developed force platform are 0–4 N and 1 Nm (torque), respectively. To show the potential of the developed force platform, a pilot study was conducted in which five surgeons experienced in intracorporeal suturing and five novices performed a suture task in a box trainer. Results - During the pilot study, the maximum and mean absolute nonzero force that the novice used were 4.7 N (SD 1.3 N) and 2.1 N (SD 0.6 N), respectively. With a maximum force of 2.6 N (SD 0.4 N) and mean nonzero force of 0.9 N (SD 0.3 N), the force exerted by the experts was significantly lower.Biomechanical EngineeringMechanical, Maritime and Materials Engineerin

    Feedback in laparoscopic skills acquisition: an observational study during a basic skills training course

    Get PDF
    This study aimed to obtain insight in the effect of expert feedback during a basic laparoscopic skills training course for residents. A questionnaire was held among participants regarding provided feedback and the self-perceived laparoscopic skills improvement. The participants (n = 24) who completed the questionnaire were in their first to fifth postgraduate year. Most feedback was directed at intracorporeal knot tying (47% reported extensive feedback), while camera navigation and body positioning received the least feedback (40% and 43%, respectively, responded to have received no feedback at all). After the course, the self-perceived competence in intracorporeal knot tying and cutting had improved significantly, while camera navigation, body positioning, pointing, and grasping tasks did not improve. In conclusion, most benefit from expert feedback can be obtained at the start of the learning curve. Therefore, the basic laparoscopic skills course should be attended early in residency. Additionally, it is crucial that training objectives are clear prior to a course for both the expert and the trainee, in order to focus the feedback on all training objectives

    Laparoscopic Video Analysis for Training and Image Guided Surgery

    Get PDF
    Automatic analysis of Minimally Invasive Surgical video has the potential to drive new solutions for alleviating needs of safe and reproducible training programs, objective and transparent evaluation systems and navigation tools to assist surgeons and improve patient safety. Surgical video is an always available source of information, which can be used without any additional intrusive hardware in the operating room. This paper is focused on surgical video analysis methods and techniques. It describes authors' contributions in two key aspects, the 3D reconstruction of the surgical field and the segmentation and tracking of tools and organs based on laparoscopic video images. Results are given to illustrate the potential of this field of research, like the calculi of the 3D position and orientation of a tool from its 2D image, or the translation of a preoperative resection plan into a hepatectomy surgical procedure using the shading information of the image. Research efforts are required to further develop these technologies in order to harness all the valuable information available in any video-based surgery

    Learning curves of basic laparoscopic psychomotor skills in SINERGIA VR simulator

    Full text link
    Purpose: Surgical simulators are currently essential within any laparoscopic training program because they provide a low-stakes, reproducible and reliable environment to acquire basic skills. The purpose of this study is to determine the training learning curve based on different metrics corresponding to five tasks included in SINERGIA laparoscopic virtual reality simulator. Methods: Thirty medical students without surgical experience participated in the study. Five tasks of SINERGIA were included: Coordination, Navigation, Navigation and touch, Accurate grasping and Coordinated pulling. Each participant was trained in SINERGIA. This training consisted of eight sessions (R1–R8) of the five mentioned tasks and was carried out in two consecutive days with four sessions per day. A statistical analysis was made, and the results of R1, R4 and R8 were pair-wise compared with Wilcoxon signed-rank test. Significance is considered at P value <0.005. Results: In total, 84.38% of the metrics provided by SINERGIA and included in this study show significant differences when comparing R1 and R8. Metrics are mostly improved in the first session of training (75.00% when R1 and R4 are compared vs. 37.50% when R4 and R8 are compared). In tasks Coordination and Navigation and touch, all metrics are improved. On the other hand, Navigation just improves 60% of the analyzed metrics. Most learning curves show an improvement with better results in the fulfillment of the different tasks. Conclusions: Learning curves of metrics that assess the basic psychomotor laparoscopic skills acquired in SINERGIA virtual reality simulator show a faster learning rate during the first part of the training. Nevertheless, eight repetitions of the tasks are not enough to acquire all psychomotor skills that can be trained in SINERGIA. Therefore, and based on these results together with previous works, SINERGIA could be used as training tool with a properly designed training program

    Surgical Simulator Design and Development

    Get PDF
    With the introduction of minimally invasive surgery (MIS), it became necessary to develop training methods to learn skills outside the operating room. Several training simulators have become commercially available, but fundamental research into the requirements for effective and efficient training in MIS is still lacking. Three aspects of developing a training program are investigated here: what should be trained, how it should be trained, and how to assess the results of training. In addition, studies are presented that have investigated the role of force feedback in surgical simulators. Training should be adapted to the level of behavior: skill-based, rule-based, or knowledge-based. These levels can be used to design and structure a training program. Extra motivation for training can be created by assessment. During MIS, force feedback is reduced owing to friction in the laparoscopic instruments and within the trocar. The friction characteristics vary largely among instruments and trocars. When force feedback is incorporated into training, it should include the large variation in force feedback properties as well. Training different levels of behavior requires different training methods. Although force feedback is reduced during MIS, it is needed for tissue manipulation, and therefore force application should be trained as well

    Support vector machines improve the accuracy of evaluation for the performance of laparoscopic training tasks

    Full text link
    Despite technological advances in the tracking of surgical motions, automatic evaluation of laparoscopic skills remains remote. A new method is proposed that combines multiple discrete motion analysis metrics. This new method is compared with previously proposed metric combination methods and shown to provide greater ability for classifying novice and expert surgeons. For this study, 30 participants (four experts and 26 novices) performed 696 trials of three training tasks: peg transfer, pass rope, and cap needle. Instrument motions were recorded and reduced to four metrics. Three methods of combining metrics into a prediction of surgical competency (summed-ratios, z-score normalization, and support vector machine [SVM]) were compared. The comparison was based on the area under the receiver operating characteristic curve (AUC) and the predictive accuracy with a previously unseen validation data set. For all three tasks, the SVM method was superior in terms of both AUC and predictive accuracy with the validation set. The SVM method resulted in AUCs of 0.968, 0.952, and 0.970 for the three tasks compared respectively with 0.958, 0.899, and 0.884 for the next best method (weighted z-normalization). The SVM method correctly predicted 93.7, 91.3, and 90.0% of the subjects’ competencies, whereas the weighted z-normalization respectively predicted 86.6, 79.3, and 75.7% accurately (p &lt; 0.002). The findings show that an SVM-based analysis provides more accurate predictions of competency at laparoscopic training tasks than previous analysis techniques. An SVM approach to competency evaluation should be considered for computerized laparoscopic performance evaluation systems
    corecore